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Logistics

• Readings for all lectures are uploaded on Moodle.
– Read at least one before the lecture

• Lecture slides will be on Moodle before or slightly after each lecture.
• Lectures are usually recorded – recordings will appear on moodle
• Assessment: 100% coursework

– Essay topics will be announced on Moodle
– Deadline: 27/04/2017

• For any lecture related question email the lecturer
• For any general issue about the module email Paula 

(paula.parpart@ucl.ac.uk)

mailto:paula.parpart@ucl.ac.uk


MORE DISCUSSION!



TOPIC OVERVIEW

1. Bayesian Models of Cognition 



If you were assessing the prospects of a 60-year-old 
man, how much longer would you expect him to 

live?



• Life poses many of these inductive problems where the true answer 
cannot be determined on the basis of the limited data available

• Yet common sense suggests at least reasonable guess

• à Accounts of perception and memory suggest that these systems 
effectively approximate optimal statistical inference, correctly 
combining new data with an accurate probabilistic model of the 
environment (Anderson, 1990; Anderson & Schooler, 1991)



Contrasting hypotheses

traditionally Griffiths & Tenenbaum (2006)

• Cognitive everyday judgements 
are error prone due to the use 

of heuristics (Kahneman & 
Tversky’s work)

• Heuristics are insensitive to 
prior probabilities

• People are near-optimal and 
are able to make smart 

predictions from sparse data  
even with everyday cognitive 

judgements

• Near-optimal -> optimal 
statistical inference = optimal 

Bayesian inference



How do cognitive judgements compare with 
optimal statistical inference?

People Optimal Bayesian model

• Ask people to predict the 
duration or extent of everyday 

phenomena

• Generate predictions of an 
optimal Bayesian model with 
assumed prior distributions

Compare!



• Task: Predicting total life span of a man we just met, on the basis of 
the man’s current age.

• ""#"$%= total amount of time the man will live 
• " = current age

Bayes Theorem

&(""#"$%|") ∝ & " ""#"$% &(""#"$%)



• Task: Predicting total life span of a man we just met, on the basis of 
the man’s current age.

• " # ##$#%& = likelihood is the probability of first encountering a man at 
age # given that his total life span is ##$#%&

• For simplicity, we assume we are equally likely to meet a man at any 
point in his life, so probability is uniform " # ##$#%& = (/##$#%&.

Bayes Theorem

"(##$#%&|#) ∝ " # ##$#%& "(##$#%&)
likelihood



• Task: Predicting total life span of a man we just met, on the basis of 
the man’s current age.

• "($$%$&') = prior probability reflects our general expectations about the 
relevant class of events – about how likely it is that a man’s life span 
will be $$%$&'.

• Actuarial data shows that the distribution of life spans in our society is 
approximately Gaussian – normally distributed- with mean ) of 75 
years and st.dev. * of 16 years.

Bayes Theorem

"($$%$&'|$) ∝ " $ $$%$&' "($$%$&')
prior



• Task: Predicting total life span of a man we just met, on the basis of 
the man’s current age.

• Combining the prior with the likelihood yields a probability distribution 
!(##$#%&|#) over all possible total life spans ##$#%& for a man encountered 
at age )

• A good guess for ##$#%& is the median of this distribution (point at which 
it is equally likely that true life span is longer or shorter)

Bayes Theorem

!(##$#%&|#) ∝ ! # ##$#%& !(##$#%&)
likelihood prior

Bayesian prediction function

posterior

my updated 
beliefs

prior beliefs



Different priors for different phenomena

Empirical prior distributions



If you were the executive evaluating the 
performance of a movie that had made $40 million 
at the box office so far, what would you estimate for 

its total sales?



• People’s judgements for life spans, movie run times, etc. were 
indistinguishable from optimal Bayesian predictions based on the 
empirical prior distributions. 

à This was an example of Bayesian updating in cognitive science.

Results

traditionally Griffiths & Tenenbaum (2006)

• Cognitive everyday 
judgements are error prone 
due to the use of heuristics 

(Kahneman & Tversky’s
work)

• People are near-optimal and 
are able to make smart 

predictions from sparse data  
even with everyday 

cognitive judgements



Bayesian Models of Cognition

• Vision research has shown that sensory processing can be as accurately 
modeled as a process of Bayesian updating (e.g., Yuille & Kersten, 2006; 
Kersten, Mamassian & Yuille, 2004; or Jacobs, 2002, on Bayesian depth 
perception). Even motor control appears to approach Bayesian optimality 
(Körding & Wolpert, 2004). 

• some researchers claim that Bayesian statistics provide a general 
framework for understanding human inductive inference: 

• Learning (Tenenbaum, 1999), human reasoning under uncertainty (Oaksfoard & 
Chater, 1994), categorisation (Tenenbaum & Griffiths, 2001), counterfactual 
inference and causal representation (Pearl, 2000; Griffiths & Tenenbaum, 2006; 
Sloman & Lagnado, 2005), and for modeling language acquisition (e.g., Hsu & 
Chater, 2010). 



Bayesian Models of Cognition

Bayesian Fundamentalism Bayesian Enlightenment

• The Bayesian model itself 
exists at a computational 
level, where its predictions 
are defined only based on 
optimal inference (Bayes 

laws) and decision-making. 
The mechanisms by which 

those decision are 
determined are outside the 

model’s scope.



Bayesian Models of Cognition

Bayesian Fundamentalism Bayesian Enlightenment

• Cognitive behaviour can be 
explained from rational 

principles alone & without 
reference to psychological or 

neurological processes 

• Significantly under 
constrained

• Like Behaviourism (black 
box)?

• Developed in conjunction with 
mechanistic considerations

• Performing model 
comparisons of different 

Bayesian models

• Take into account 
representations



• Computational
– What problem is the brain solving? What information is 

required? What is the structure of the environment?

• Algorithmic
– What processes does the mind execute to produce the 

solution?
– What algorithms are computed? 

• Implementational
– Hardware: How are those algorithms implemented in the 

brain?

MARR’S (1982) LEVELS



2.The Future of AI:                     

Human vs. Machine Learning

TOPIC OVERVIEW



- INTERMEZZO: DISCUSSION

What do you think an AI has to possess in order 
to be truly “intelligent”?

- i.e., Learning and thinking like a person



Recent developments in AI

• Engineering trends: Deep Neural Networks
• What can they do?

– Object recognition
– Speech recognition
– Learn how to play video games
– …



Deep Neural Networks: object recognition
• Krizhevsky et al. (2012): deep convolutional network that nearly 

halved the error rate of previous state-of-the-art algorithms

• Most challenging benchmark: ImageNet is a dataset of over 15 million 
labeled high-resolution images belonging to roughly 22,000 categories 



How do Neural Networks (NNs) work?  A very 
brief Intro. 

Example: Object recognition 



Example: Object recognition

• Try to identify:



Object recognition

• We do this with the 80 
billion neurons in our brain 
working together to transmit 
information. 

• This remarkable system of 
neurons is also the 
inspiration behind a widely-
used machine learning 
technique called Artificial 
Neural Networks (NN).



Object recognition

• Some computers using 
NN’s have even out-
performed humans in 
recognizing images.



The Problem: Recognize handwritten digits

• Image recognition is used 
in technology for visual 
surveillance, guiding 
autonomous vehicles, 
identifying abnormalities in 
X-ray images, smartphone 
app that converts 
handwriting into typed 
words, etc.

• How can we train an artificial neural network to 
recognize images of handwritten digits?



The Problem: Classify digits 0-9

28 x 28 pixels

784 pixels coded as numbers 
based on darkness

Input 
layer:
784 
variables, 
one per 
pixel



The Problem: Classify digits 0-9

1. Training: NN model is 
trained by giving it 
examples of 10,000 
handwritten digits, together 
with the correct digits they 
represent. à allows the 
NN model to understand 
how the handwriting 
translates into actual digits. 

Handwritten digits in the MNIST database

2. Testing/Validation: After the NN model is trained, we can test how 
well the model performs by giving it 1,000 new handwritten digits 
without the correct answer. The model is then required to recognize 
the actual digit.

3. This process is called cross-validation.



The Problem: Recognize handwritten digits

Contingency table to view results:

• Out of the 1,000 handwritten images that the model was asked to 
recognize, it correctly identified 922 of them, which is a 92.2% accuracy.



The Problem: Recognize handwritten digits

• Some of the digits get confused.



The neurons that inspired the network

Incoming 
signals by 

other neurons

If level of signals is 
high enough, 
neuron sends 

electrical pulse to 
terminals 

Outgoing signals 
are then received 
by other neurons.



HOW THE MODEL WORKS

Input 
node

Output 
node



HOW THE MODEL WORKS

Input 
node

Output 
node

Step 1: When input node is given 
an image, it activates a unique set 

of neurons in first layer



HOW THE MODEL WORKS

Input 
node

Output 
node

Step 2: activated neurons send 
signals to every connected neuron 

in the next layer



HOW THE MODEL WORKS

Input 
node

Output 
node

Step 3: In next layer, each neuron is 
governed by a rule on what 

combinations of received signals 
would activate the neuron



HOW THE MODEL WORKS

Input 
node

Output 
node

Step 4: Steps 2-3 are repeated for all the 
remaining layers (it is possible for the 

model to have more than 2 layers), until 
we are left with the output node.



HOW THE MODEL WORKS

Input 
node

Output 
node

Step 5: output node deduces the correct digit 
based on signals received from neurons in 

the layer directly preceding it (layer 2). 



HOW THE MODEL WORKS

Input 
node

Output 
node

Each solution in Scenario 1 and 2 can be represented by different 
combinations of activated neurons. Because the images fed as input 

in Scenarios 1 & 2 are different, the network activates different 
neural paths from input to the output. However, the output still 

recognizes both images as the digit “6”.



Training the model

• Decide on number of layers and 
number of neurons in each layer 

• For the digit recognizer NN, 3 
layers with 500 neurons each 
were used. 

• Key factors involved in training a 
model are:
• metric to evaluate the model’s 

accuracy, i.e., loss function 
(SSE)

• Rules that govern whether 
neurons are activated or not



Training the model

Neuron’s activation rule has 2 
components: 

1. the weight (i.e. strength) of 
incoming signals [w] 

2. minimum received signal 
strength required for 
activation [m]. 

Rules for neuron G



Neural Networks: Limitations

1. Computationally expensive.
Training a NN takes more time and CPU power compared to training 
other types of models (e.g., random forests)

Although NN are not a new technique (1980s and 1990s), they have had 
arevival in recent years because of hardware advances

2. Lack of feature recognition. 
The NN is unable to recognize images if they take on slight variations in 
shape, or are placed in a different location.



Advanced NN: Convolutional Neural Networks

Neural Networks 

Convolutional Neural Network

Solves the problem of lack of feature recognition, by 
looking at various regions of the image. 



Convolutional Neural Networks (CNNs)

• CNNs are more efficient and widely used = A neural network that 
uses a trainable filter instead of fully-connected layers with 
independent weights. 



Convolutional Neural Networks (CNNs)

• CNNs are more efficient and widely used = A neural network that 
uses a trainable filter instead of fully-connected layers with 
independent weights. 



Advanced NNs: Deep Neural Networks

Deep Neural Networks =  A neural network with at least 
one hidden layer (some networks have dozens).



Optimization Method ~ Backpropagation

Loss function
(log-likelihood, 
classification 
error)

Run until error stops improving = converge



Demo

*Yann LeCun
Input

OutputHidden



Putting it all back together: Deep 
Convolutional Networks

Krizhevsky et al. (2012): a deep convolutional neural network is 
capable of achieving record breaking results in object 
recognition using purely supervised learning. 

“It is notable that our network’s 
performance degrades if a single 
convolutional layer is removed. “



Deep Convnets continue to dominate

• Best results achieved are very close to human-level 
performance at an error rate of 0.2% (Ciresan, Meier & 
Schmidhuber, 2012).

• He, Shang, Ren & Sun (2015): recently approaching 
human-level performance on some benchmarks



Agriculture with deep learning drone algorithms

Dramatic improvements in:

● Crop and tree counting

● Early disease detection

● Livestock tracking

● Intelligent pesticide 
delivery

● Yield forecasting

● Crop design



Urban insights with Deep Learning Drone Tech

Fully automated

● Parking spot locator

● Car counting

● Optimizing traffic

● Crowd analysis



Automatic speech recognition

• Hidden Markov Models have been replaced piece by piece with 
deep learning



Another grand challenge of AI

• Deep Neural Networks were used by Google in Oct 2015 and 
Mar 2016 to defeat human champions in the game of Go



A  typical argument has been that neural 
networks have achieved this success by virtue 

of their brain-like computation and ability to 
emulate human learning and human cognition.

However, … 



Artificial intelligence vs. Human Intelligence

• Despite performance achievements, these AI 
systems differ from human intelligence in many 
ways e.g., 

• What they learn 
• How they learn



Discussion Intermezzo

WHAT ARE THEY MISSING?



Endowing AI with cognitive science & 
psychology 

Neural 
Networks +

Intuitive physics Theory of mind

Causal 
reasoning

Inductive biases
More structure

Discovery of new 
mental models = 
Learning-to-learn



Endowing neural networks with cognitive science 

• Argument (Lake et al., in press): As long as natural 
intelligence remains the best example of intelligence, we 
believe that the project of reverse-engineering the human 
solutions to difficult computational problems will continue 
to inform and advance AI.

! Important Distinction: Of course not all AI is built for the purpose of taking 
neural inspiration and make claims of cognitive and neural plausibility. (e.g., the 
Automated Statistician)



Building human-like learning and thinking 
machines

Lake, Ullman, Tenenbaum & Gershman (2017):

1. Developmental ingredient: intuitive physics
2. Developmental ingredient: intuitive psychology
3. Learning ingredient: model building (causal

models)

4. Learning ingredient: compositionality
5. Learning ingredient: learning-to-learn
6. Learning ingredient: speed

(our minds are able to build rich models instantly)

Core 

ingredients 

of human 

intelligence



Why focus on development?

• “If an ingredient is present early in development, it is 
certainly active and available well before a child or adult 
would attempt to learn the types of tasks discussed here. 
Thus is true regardless of whether the early-present 
ingredient itself is learned form experience or innately 
present.” (Lake et al., in press)

• The earlier an ingredient is present, the more likely it is to 
be foundational to later development and learning.



Building human-like learning and thinking 
machines

An Important Distinction: 

Generic neural networks Human learning mechanisms

• aimed at pattern recognition

Integrate



Building human-like learning and thinking 
machines

Generic neural networks Human learning mechanisms

• aimed at pattern recognition

Can we teach neural networks to draw inferences? 



Challenges for building more human-like 
machines

• 1) The Characters Challenge
– Learning simple visual concepts (simple for humans!)



1) The Characters Challenge

• Similar to MNIST benchmark for recognizing handwritten digits 

à Just because humans and neural networks perform equally well on the 
MNIST recognition task, does not mean they learn and think the same 
way:
1) People learn from fewer examples
2) People learn richer representations 



1) Learning handwritten characters 

1. People can learn 
to recognize a new 
handwritten 
character from a 
single example

People learn more than how to do pattern 
recognition: they learn a concept.

2. In addition to 
recognizing new 
examples, people 
can also generate
new examples.

3. People can parse 
a character into its 
most important 
parts and relations.

4. People can 
generate new 
characters given 
a small set of 
related 
characters.

*Lake et al., 2012



Interim conclusions

v People’s additional abilities come for free along with the acquisition of 
the underlying concept.

v People can build models and then use them for arbitrary new tasks 
and goals.

v People learn a lot more from a lot less – and capturing these 
human-level learning abilities in machines is the challenge. 



Core Ingredient 1: 
Intuitive physics

• Young children have rich knowledge of intuitive physics 

• At 2 months and earlier, infants expect inanimate objects to follow 
principles of persistence, continuity, cohesion and solidity.

• At 6 months, infants have developed different expectations for rigid 
bodies, soft bodies, and liquids.

• By their 1st birthday, infants have gone through several transitions of 
comprehending basic physical concepts such as inertia, containment 
and collisions 

All influences 
later learning..



Core Ingredient 1: Intuitive physics

• There is no single agreed-upon computational account of 
these early physical principles and concepts

– Decision trees? (Baillargeon et al., 2009)
– Lists of rules? (Sigler & Chen, 1998)
– Intuitive physical reasoning as inference over a physics 

software engine, i.e., the kind of simulators that power modern-
day animations and games (Bates et al., 2015, Battaglia et al., 
2013; Gerstenberg et al., 2015)



Intuitive physical reasoning as inference 
over a physics software engine

• Hypothesis: People reconstruct a perceptual scene using internal 
representations of the objects and their physically relevant properties 
(mass, elasticity, surface friction), and forces acting on the objects 
(gravity, friction, collision impulses). 

• intuitive physical state representation is approximate and probabilistic, 
and oversimplified. à But it can support mental simulations that can 
predict how objects will move in the immediate future in response to 
forces or on their own.



Core Ingredient 1: Intuitive physics

• http://www.ucl.ac.uk/lagnado-lab/neil_bramley.html

http://www.ucl.ac.uk/lagnado-lab/neil_bramley.html


Integration 1: Intuitive physics + Neural 
Networks

• 1) making predictions without simulating physics: Facebook AI 
researchers (Lerer et al., 2016) trained a deep convent to predict the 
stability of block towers (“Jenga”) from simulated images (physical 
judgment by PhysNet)

• 2) Alternatively, could a neural network be trained to emulate a 
general-purpose physics simulator, given the right type and quantity of 
training data, such as the raw input experienced by a child? 

Challenges: what will the 
deeper layers encode?

How will the deep net 
generalize?



Intuitive psychology

• Pre-verbal infants distinguish animate agents from inanimate objects

• Infants also expect agents to act contingently and reciprocally, to have 
goals, and to take efficient actions towards those goals subject to 
constraints (at 3 months, anti-social agents vs. neutral agents)

• One possibility is that intuitive psychology is simple cues “all the way 
down” (Schlottmann et al., 2013)

• Or: generative models of action choice = Formalize concepts such as 
‘goal’, ‘agent’, planning’, ‘cost’, used to describe core psychological 
reasoning in infancy

Applying deep networks here is 
also new. 

à It could learn visual cues, 
heuristics and summary stats of 

a scene with agents. 



Core Ingredient 3: Model building

• Deep neural networks  are extremely data hungry.

• Rapid model building: When children learn in their native language, 
they make meaningful generalizations from only a few examples of a 
new concepts such as  hairbrush or pineapple

• Why are NNs so much less efficient? (not always of course)

• Even with just a few examples, people can lean remarkably rich 
conceptual models.



1) Learning handwritten characters 

1. People can learn 
to recognize a new 
handwritten 
character even if 
someone else draws 
it!
People learn more than how to do pattern 
recognition: they learn a concept.

2. In addition to 
recognizing new 
examples, people 
can also generate
new examples.

3. People can parse 
a character into its 
most important 
parts and relations.

4. People can 
generate new 
characters given 
a small set of 
related 
characters.

*Lake et al., 2012



Core Ingredient 3: Models allow

• Concepts support classification
• Concepts support prediction
• Action
• Communication 
• Imagination
• Explanation
• Composition

• => These abilities are not independent of the model, rather they hang 
together and come for free with the acquisition of the underlying 
concept.



Can we imitate this rapid model building?

v Conclusions on the Characters Challenge by Lake et al. (2015)’s 
probabilistic program induction:

v While both people and model represent characters as a sequence of 
pen strokes and relations, people have a far richer repertoire of 
structural relations between strokes.

v People can efficiently integrate across multiple examples of a 
character combining different variants into single coherent 
representation.

v -à AI still not as good as human performance!



Can we imitate this rapid model building?

v Lake et al. (2015)’s probabilistic program induction:

People Machines

• Compare the ability to learn new handwritten 
characters from the world’s alphabets. 

• Deep learning 
• Bayesian Program learning 

(BPL) represents concepts as 
simple stochastic programs, i.e., 
structured procedures that 
generate new examples of a 
concept when executed



A causal, compositional model of handwritten characters



Probabilistic inference allows the model to generate new 
examples from just one example of a new concept



Visual Turing Test: Human or Machine?



The Competition: 
Lake, Salakhutdinov, Tenenbaum (2015)

v BPL’s learning structure can do one-shot classification at 
human-level performance & outperform current convolutional 
deep learning models

v Representations that BPL learns also enable it to generalize 
in other, more creative human-like ways (visual Turing Test)

v While both people and model represent characters as a 
sequence of pen strokes and relations, people have a far 
richer repertoire of structural relations between strokes.



The 3 main ingredients behind the success of 
this model:

1) Compositionality

2) Causality

3) Learning-to-learn



The 3 main ingredients behind the success of 
this model:

1) Compositionality

= New representations can be 
constructed through the combination 
of primitive elements. 

** Eric’s lecture will dive into this more.



The 3 main ingredients behind the success of 
this model:

1) Causality

= Explaining observed data through the 
construction of causal models of the 
world 
• Generative process of BPL model for 

characters resembles the causal 
steps of writing in the world

** Dave’s + Christos’ lecture will dive into this 
more.



The 3 main ingredients behind the success of 
this model:

1) Learning-to-learn

= Theory-based inference

** Active Learning lecture will dive into this 
more.



The 3 main ingredients behind the success of 
this model:

1) Compositionality
2) Causality
3) Learning-to-learn

• Explaining observed data through the construction of 
causal models of the world 

• Hallmark of human-level learning (Lake et al., in press)



Discussion Intermezzo

WHAT IS MISSING?



Conclusions Part II

1. Richness and flexibility of human learning suggests that 
learning as model building is better metaphor than learning as 

pattern recognition

2. Human capacity for one-shot learning suggests that these 
models are built upon rich domain knowledge rather than 

starting from blank slate.

3. In contrast, much of recent progress in deep learning has been 
on pattern recognition problems, incl. object recognition, 

speech recognition, and (model-free) video game learning, 
which use large data sets but little domain knowledge.
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